Enhanced Heart Disease Prediction Based on Machine Learning and ?2 Statistical Optimal Feature Selection Model

نویسندگان

چکیده

Automatic heart disease prediction is a major global health concern. Effective cardiac treatment requires an accurate prognosis. Therefore, this paper proposes new classification model based on the support vector machine (SVM) algorithm for improved detection. To increase accuracy, ?2 statistical optimum feature selection technique was used. The suggested model’s performance then validated by comparing it to traditional models using several measures. proposed increased accuracy from 85.29% 89.7%. Additionally, componential load reduced half. This result indicates that our system outperformed other state-of-the-art methods in predicting disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation-based Feature Selection for Machine Learning

A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated w...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

A stratified sampling technique based on correlation feature selection method for heart disease risk prediction system

In medical, data mining method can be utilized by the physicians to improve clinical diagnosis. In this paper a stratified approach named Correlation Feature Selection Stratified Sampling (CFS-SS) has been introduced. This method is applied to medical diagnosis heart disease risk prediction system. By using this proposed system the attributes are grouped together into homogenous sub groups, bef...

متن کامل

Feature Selection Based on Confidence Machine

In machine learning and pattern recognition, feature selection has been a hot topic in the literature. Unsupervised feature selection is challenging due to the loss of labels which would supply the related information.How to define an appropriate metric is the key for feature selection. We propose a filter method for unsupervised feature selection which is based on the “Confidence Machine”. Con...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs

سال: 2022

ISSN: ['2411-9660']

DOI: https://doi.org/10.3390/designs6050087